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Abstract

Atmospheric CO2 concentration continues to rise. It is important, therefore, to determine what acclimatory changes
will occur within the photosynthetic apparatus of wheat (Triticum aestivum L. cv. Yecora Rojo) grown in a future
high-CO2 world at ample and limited soil N contents. Wheat was grown in an open field exposed to the CO2
concentration of ambient air [370 µmol (CO2) mol−1; Control] and air enriched to ∼200 µmol (CO2) mol−1

above ambient using a Free-Air CO2 Enrichment (FACE) apparatus (main plot). A High (35 g m−2) or Low (7 and
1.5 g m−2 for 1996 and 1997, respectfully) level of N was applied to each half of the main CO2 treatment plots
(split-plot). Under High-N, FACE reduced stomatal conductance (gs) by 30% at mid-morning (2 h prior to solar
noon), 36% at midday (solar noon) and 27% at mid-afternoon (2.5 h after solar noon), whereas under Low-N, gs
was reduced by as much as 31% at mid-morning, 44% at midday and 28% at mid-afternoon compared with Control.
But, no significant CO2 × N interaction effects occurred. Across seasons and growth stages, daily accumulation
of carbon (A′) was 27% greater in FACE than Control. High-N increased A′ by 18% compared with Low-N. In
contrast to results for gs, however, significant CO2 × N interaction effects occurred because FACE increased A′ by
30% at High-N, but by only 23% at Low-N. FACE enhanced the seasonal accumulation of carbon (A′′) by 29%
during 1996 (moderate N-stress), but by only 21% during 1997 (severe N-stress). These results support the premise
that in a future high-CO2 world an acclimatory (down-regulation) response in the photosynthetic apparatus of field-
grown wheat is anticipated. They also demonstrate, however, that the stimulatory effect of a rise in atmospheric
CO2 on carbon gain in wheat can be maintained if nutrients such as nitrogen are in ample supply.

Abbreviations: A – instantaneous leaf net assimilation rate [µmol (CO2) m−2 s−1]; A′ – daily integral of net
leaf carbon accumulation [g(C) m−2 d−1]; A′′ – seasonal integral of net leaf carbon accumulation [g(C) m−2 yr−1];
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ANOVA – analysis of variance; Ca – atmospheric carbon dioxide concentration; Ci – internal carbon dioxide
concentration; CL – Control-Low; CH – Control-High; CO2 – carbon dioxide effect in ANOVA; DAP – day after
planting; FACE – free-air-CO2-enrichment; FL – FACE-Low; FH – FACE-High; gs – leaf stomatal conductance
[mol (H2O) m−2 s−1]; GS – growth stage in ANOVA; LHC II – light harvesting complex; N – nitrogen effect in
ANOVA; TOD – time of day [mid-morning (2.5 h prior to solar noon), midday (solar noon), mid-afternoon (2.5 h
after solar noon)] effect in ANOVA; Vc,max – maximum Ribulose-1,5-bisphosphate saturated rate of carboxylation
in vivo; YR – year effect in ANOVA

Introduction

The report of the IPCC (Intergovernmental Panel on
Climate Change 1996) projects that atmospheric CO2
is rising. A rise in atmospheric CO2 concentration will
directly affect diffusion conductance of CO2 and H2O
through stomata (Morrison 1987, 1993, 1998). How-
ever, this effect may be different for wheat (Triticum
aestivum L.) grown with adequate water, but limited
N, compared with that observed for wheat grown with
adequate N, but limited water (Sionit et al. 1980b,
1981b; Wall et al. 1994, 1995; Garcia et al. 1998).
The direct effect of elevated CO2 on reducing stomatal
conductance (gs) and subsequent net assimilation rate
(A) may differ because acclimatory changes (down-
regulation) within the photosynthetic apparatus can
occur in response to reduced N supply (Sage 1994).
Hence, we need to separate the relative effects that
a rise in atmospheric CO2 concentration will have
on both diffusion processes mediated by stomata and
biochemical processes mediated by the amount and
activity of Rubisco in wheat when water in unlimited
and nitrogen is in both ample and limited supply.

Under nonlimiting water and nutrient conditions,
a relatively constant internal CO2 concentration (Ci)
of between 20 and 30% below that of atmospheric
is observed in C3 plants (Wong et al. 1979; Von
Caemmerer and Farquhar 1981; Farquhar and Wong
1984; Ball et al. 1987; Mott 1988). But, any change
in the response of stomata because of elevated CO2
and limited N supply, may alter plant water relations
and as a consequence alter the relationship between
Ci and atmospheric CO2 concentration (Ci/Ca). Any
decrease in carboxylation capacity or reduction in gs
because of elevated CO2 and N stress would tend to
increase Ci/Ca (Araus et al. 1986b; Loreto et al. 1994;
Grossman-Clarke et al. 1999). Thus, as the CO2 con-
centration of the atmosphere increases, Ci/Ca may be
a good indicator of any acclimation response of the
photosynthetic apparatus to either water or N stress, or
their interaction with other environmental constraints
(Sage 1994).

Short-term elevation of atmospheric CO2 concen-
tration stimulates carbon gain in C3 plants because
of an increased substrate availability at the primary
carboxylating enzyme (Rubisco) (Long and Drake
1991, 1992; Woodrow 1994; Sage 1994; Van Oos-
ten and Besford 1994; Webber et al. 1995) and
suppressed photorespiration (Sharkey 1988; Bowes
1991; Stitt 1991). However, under limited N sup-
ply, a reduction in both carboxylation efficiency and
maximum rate of carboxylation (Vc,max) (Webber et
al. 1995), along with a reduction in sink strength
(Rogers et al. 1993, 1996) at elevated CO2 may
cause a down-regulation of photosynthetic proteins
(Van Oosten and Besford 1994; Van Oosten et al.
1994). However, reports on the effect of elevated CO2
on carboxylation capacity (Vc,max, Rubisco content
and activity) in wheat have been mixed because Del-
gado et al. (1994) found no change regardless of N
supply, whereas in young plants grown with ample
N supply and warm temperatures an up-regulation
of photosynthetic capacity was shown by Habash et
al. (1995). In contrast, Barnes et al. (1995) repor-
ted a down-regulation in wheat. Rowland-Bamford
et al. (1991) reported down-regulation in rice (Oryza
sativa L.) grown in sunlit controlled-environment cab-
inets as the CO2 concentration of the air increased
from 160 to 900 µmol (CO2) mol−1. They sugges-
ted that down-regulation involved modulation of both
activity and amount of Rubisco protein in the leaf be-
cause Rubisco content and specific activity declined
significantly as atmospheric CO2 concentration in-
creased. Despite mixed results, most chamber-based
studies suggest that a reduction in carboxylation ef-
ficiency occurs even under ample N (McKee and
Woodward 1994a,b; McKee et al. 1995). However,
most of these studies have utilized plants grown in
controlled-environment or open-top chambers where
an increase in atmospheric CO2 concentration has
been accompanied by significant alteration of micro-
climate (Kimball et al. 1997), and especially where
in many cases artificial restrictions of rooting volume
or cold soil temperatures may have imposed a lim-
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itation (Arp 1991, 1993; Sage 1994; Oechel et al.
1994).

Despite any alteration in carboxylation capacity,
wheat grown with elevated CO2 and limited N sup-
ply may still have enough of an increase in assimilate
supply that will dilute tissue N content (Rogers et al.
1993, 1996; Lou et al. 1994; Drake et al. 1997).
Undoubtably, reduction in leaf tissue N concentra-
tion will reduce Rubisco content and activity (Sage
1994; Webber et al. 1995; Vu et al. 1997, 1998;
Adam et al. 1997, 2000) that will ultimately cause
a reduction in carboxylation capacity (Evans 1983;
Pettersson and McDonald 1994). In a FACE wheat
experiment, Nie et al. (1995a,b) reported no reduction
in carboxylation efficiency, light harvesting complex
(LHC II), or N content for uppermost expanded sun-
lit leaves of wheat grown with ample N and water
supply. In a companion study, Osborne et al. (1998)
reported that reductions in A were not observed for
the uppermost expanded sunlit leaf, but elevated CO2
decreased carboxylation efficiency for shaded leaves
lower in the canopy. Carboxylation efficiency was
also found to be dependent on leaf position and onto-
geny for spring wheat grown in open-topped-chambers
(Mitchell et al. 1998). In a controlled-environment
study, Lawlor et al. (1993) demonstrated that the af-
fect of elevated CO2 on photosynthetic capacity was
dependent on environment constraints and ontogeny
of the plant. Leaves that emerged later in the onto-
geny of the wheat plant had a progressive decrease in
photosynthetic capacity. Levels of photon flux density
have also been shown to affect the interaction between
photosynthetic capacity and CO2 level, because an ac-
climation response decreased photosynthetic capacity
in a shade adapted forest under story plant, Indiana
strawberry (Duchesnea indica) (Osborne et al. 1997).
This decrease was accompanied by a 22% increase in
maximum quantum efficiency of net photosynthesis
and a lower light compensation point. This response
enabled this herbaceous perennial grown under elev-
ated CO2 to have positive net carbon uptake even when
light levels were insufficient for the ambient grown
plants. In the lower leaves of wheat during vegetat-
ive growth, N was reallocated from Rubisco to LHC
II, typical of shade-acclimated leaves (Evans 1993).
During reproductive growth, N was reallocated for
grain development (Simpson et al. 1983; Simpson
1992; Fisher 1993). Osborne et al. (1998) reported that
photosynthetic acclimation and the redistribution of N
at elevated CO2 was dependent on leaf age, vertical
position within the canopy and development stage.

Furthermore, they postulated that reduced carboxyla-
tion capacity was due to a CO2-based N dilution effect
(Estiarte et al. 1999; Sinclair et al. 2000). Acclima-
tion may be interpreted as an increase in the efficiency
of N usage, i.e. a balance between N allocated for
growth (Coleman et al. 1993; Rogers et al. 1993,
1996; Sage 1994; Drake et al. 1997), energy transduc-
tion (Osborne et al. 1997) and carboxylating capacity
(Woodrow 1994; Webber et al. 1995). Nevertheless,
under elevated CO2 and more extreme N deficits, a
significant reduction in photosynthetic capacity might
occur even for the uppermost expanded sunlit leaf.
Such an acclimatory response may reduce assimilate
supply independent of any direct effect of elevated
CO2 on stomatal response.

Results from previous free-air CO2 enrichment
(FACE) wheat experiments, where water was limit-
ing and N was nonlimiting, indicated that interactive
effects of elevated CO2 and water stress affected sto-
mata mediated diffusion processes (Wall et al. 1994,
1995; Garcia et al. 1998). Carboxylation efficiency,
however, was not affected until N became limiting
during senescence (Nie et al. 1995a,b; Osborne et al.
1998). Nevertheless, the interactive effects of elevated
CO2 and N stress on A, gs and Ci/Ca are still unclear.
In light of these observations, it is reasonable to make
the following hypotheses: (1) regardless of N supply, a
rise in atmospheric CO2 concentration will reduce gs;
(2) but, a significant increase in A because of elevated
CO2 will only be observed when N is not severely lim-
iting; (3) with ample N supply, a balance between N
needed to maintain photosynthetic capacity and that
needed for growth will occur; (4) but, in order to
maintain growth under more severe N stress, a greater
reallocation of N from the photosynthetic apparatus
to structural tissue will occur; (5) any reallocation
of N away from the photosynthetic apparatus under
limited N supply, to maintain growth, constitutes an
acclimatory response.

The rational for this study was to provide evidence
for any acclimatory response in wheat leaves from
the biochemical (Adam et al. 1997, 2000), to the in-
dividual leaf (reported herein), to the whole-canopy
(Brooks et al. 2000) level. This paper, the second in a
series of three, reports results on the interactive effects
of elevated CO2 and N levels on carbon gain of wheat
leaves grown in an open field. Differences in carbon
gain within a day and across days and growing sea-
sons were used to make inferences about acclimatory
responses in the photosynthetic apparatus to elevated
CO2 and limited N supply.
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Materials and methods

Experimental site and CO2 and H2O treatment
description

Full details of the experimental site, cultivation, ir-
rigation, fertilization, other cultural practices and
the FACE apparatus have been reported elsewhere
(Hendrey 1993; Wall and Kimball 1993; Pinter et al.
1996; Kimball et al. 1999). Briefly, a two-year study
on hard red spring wheat (cv. Yecora Rojo) was con-
ducted in an open field at the University of Arizona,
Maricopa Agricultural Center, located 50 km south of
Phoenix, Arizona (33.1◦ N, 112.0◦ W). Wheat seeds
were sown into flat beds in east-west rows parallel
to the irrigation tubing (0.5 m tube spacing, 0.3 m
emitter spacing, 0.2 m depth) on 14–15 December
1995 and 15 December 1996. Seeding rates were 109
kg ha−1 (∼236 seeds m−2; planting density of 189
plants m−2) during 1995 and 111 kg ha−1 (∼252 seeds
m−2; planting density of 194 plants m−2) during 1996
(50% emergence occurred on 01 January 1996, and the
crop was harvested on 29–30 May 1996; 50% emer-
gence occurred on 30 December 1996, and the crop
was harvested on 28–29 May 1997). Following sow-
ing, a FACE apparatus (Hendrey 1993) was erected on
site to enrich the CO2 concentration of ambient air (ca.
370 µmol mol−1) above the wheat crop by approxim-
ately 200 µmol mol−1 (main plot). Enrichment began
within a few days of 50% emergence (01 January
1996; 03 January 1997) for 24 h until physiological
maturity (15 May 1996; 12 May 1997). The average
daytime CO2 concentrations in the FACE and Control
plots were 548 and 363 µmol mol−1, respectively,
while the nighttime values were 598 and 363 µmol
mol−1. Seasonal average concentrations were within
0.5 µmol mol−1 of the set point and 93% of the 1-
min. averages were within 10% of the set point. On
average, the contamination of the Control plots from
the FACE plots was <15 µmol mol−1 (Kimball et al.
1999).

During 1996, soil had 8.0 g N m−2 of ammonium
plus nitrate in the top 0.9 m profile. Two N treatments
were applied as a strip-plot because each strip across
the field contained the same N level. The High-N strip-
plot received 5.0, 12.5, 12.5 and 5.0 g N m−2 from
ammonium nitrate through the sub-surface drip-tape
irrigation system on 30 January (5-leaf), 22 Febru-
ary (mid-tillering), 30 March (anthesis) and 18 April
(early grain fill), respectively, for a total amount of
35 g N m−2 during 1996. The Low-N treatment re-

ceived 1.5, 3.0, 2.5 and 0 g N m−2 on irrigation dates
given above for a total of 7.0 g N m−2. Nitrate in the
irrigation water added 3.3 and 3.0 g N m−2 to the
High- and Low-N plots, respectively.

During 1997, soil had 14.5 g N m−2 as am-
monium plus nitrate in the top 0.9 m profile. The
High-N strip-plot received 5.0, 12.5 12.5, and 5.0 g
N m−2 from ammonium nitrate through a sub-surface
drip-tape irrigation system on 30 January (5-leaf), 5
March (mid-tillering), 18 March (anthesis) and 22
April (early grain fill), respectively, for a total amount
of 35 g N m−2 during 1997. In the Low-N treatment,
preplant concentration of ammonium plus nitrate was
about 6.9 g N m−2. The Low-N treatment received 0.5,
0.5, 0.5 and 0 g N m−2 on irrigation dates given above
for a total of 1.5 g N m−2. Nitrate in the irrigation
water added a further 4.3 and 3.8 g N m−2 to the High-
and Low-N plots, respectively.

The combination of CO2 and N levels gave four
treatments consisting of Control-Low (CL), FACE-
Low (FL), Control-High (CH) and FACE-High (FH).
Although actual irrigation dates differed between 1996
and 1997, N application amounts and timing with re-
spect to growth stage were similar across years. In
order to establish a more severe N stress during 1997
compared with 1996, however, the Low-N treatment
received 1.5 g N m−2 (severe N stress) rather than 7 g
N m−2 (moderate N stress). Furthermore, due to the
application of N over several growth stages, and due
to mineralization processes, the availability of soil N
throughout the ontogeny of the crop for both N-limited
and unlimited treatments mimicked that observed in
natural grassland ecosystems.

Field measurements of leaf gas exchange rates

Dawn to dusk CO2 and H2O gas exchange rates were
measured on randomly selected fully expanded sunlit
leaves with three portable closed-exchange (transient)
systems with 0.25 L transparent assimilation cuvettes1

(Model LI-6200, LI-COR, Inc., Lincoln, Nebraska).
Each infrared gas analyzer was calibrated against a
gravimetrically prepared mixture of CO2 in air (± 1%
Primary Standard, Matheson Gas Products, Inc., Cu-
camonga, California), and cuvette humidity sensors
were calibrated with a dew-point generator (LI-610,
LI-COR Inc., Lincoln, Nebraska) immediately prior
to use. Measurements of A [µmol (CO2) m−2 s−1] and

1 Mention of this or any other proprietary product does not im-
ply an endorsement or recommendation by the authors or their
institution over products not mentioned.
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gs [mol (H2O) m−2 s−1] began at a leaf cuvette CO2
concentration of 370±35 or 550±35 µmol mol−1 for
Control and FACE, respectively, on the central portion
of fully expanded (ligule emerged) upper-canopy sun-
lit leaves. The leaf cuvette was held in the horizontal
position and caution was used not to shade any por-
tion of the leaf. One leaf per row from each of five
different rows (repeated measures) was randomly se-
lected in the area of each subplot (Wall and Kimball
1993) designated for net assimilation studies for three
replications for High- and Low-N. Because there were
three instruments, all three replications were measured
simultaneously, thereby minimizing variation in gas
exchange measurements because of diurnal changes
in meteorological conditions, particularly sun angles
and incident photosynthetically active radiation. Indi-
vidual runs were completed in less than 1.5 h. Three
observations were recorded at 10-s intervals (total
measurement time, therefore, was approximately 55 s,
which minimized leaf cuvette effects on gas exchange
rate measurements). The first 10-s measurement inter-
val was discarded from the statistical analysis because
the CO2 concentration in the assimilation cuvette was
unstable during that period. Consequently, each mean
datum was derived from 5 leaves × 2 observations ×
3 replications.

Each portable transient gas-exchange system made
direct measurements of atmospheric CO2 concentra-
tion (Ca), air humidity and leaf and air temperatures.
We calculated leaf A directly, whereas gs and Ci were
calculated as suggested by LI-COR (1990) follow-
ing the equations of Von Caemmerer and Farquhar
(1981). Phenological development (average numerical
decimal code across all treatments) was used to group
gas exchange parameters (A, gs and Ci/Ca) by distinct-
ive growth stage as follows: 5-leaf, tillering, stem-
elongation/inflorescence emergence, anthesis, soft and
hard dough for 1996/1997 (Zadoks 15-91; Zadoks et
al. 1974). A′ for each treatment was derived by integ-
rating the respective dawn to dusk A. Dawn and dusk
times in mountain standard time (MST) were obtained
from standard meteorological tables for Maricopa,
Arizona, USA, and served as zero response points
for the purpose of integration. A′′ was derived by in-
tegrating A′ from 50% emergence until physiological
maturity (25% fractional absorbed photosynthetically
active radiation). Integrations were performed using
the Area.xfm trapezoidal integration routine (Sigma
Plot, v. 4.01, SPSS Inc., Chicago, Illinois).

Experimental design and statistical design

All ANOVAs were performed using PROC GLM in
SAS (Reference manual version 6.0, 1989) to evaluate
the CO2, N and any CO2×N interaction effects on
A, gs and Ci/Ca. All ANOVAs for Ci/Ca were per-
formed on a log(10) transformation of Ci/Ca. These
effects were evaluated based on a strip-split plot ex-
perimental design (CO2: main-plot; N: split-plot) as
described in a companion paper (Kimball et al. 1999).
Time of day (TOD) was the third factor in the AN-
OVA. It was treated as another split in the design to
evaluate the effect of CO2 and N on A and gs at mid-
morning (2.5 h prior to solar noon), midday (solar
noon) and mid-afternoon (2.5 h after solar noon). The
effects of CO2, N and TOD on A and gs were evalu-
ated across growth stage (GS) as a repeated measure.
Hence, the experimental design was a strip-split-split-
repeated measure design. Because N application rate
for the Low-N treatments was 7 g N m−2 during 1996
compared with only 1.5 g N m−2 during 1997, a mod-
erate and a severe N treatment existed in 1996 and in
1997, respectively. Comparisons of the effect of CO2
and N on A′′ across years were performed by treat-
ing year (YR) as another repeated measure. To avoid
pseudo-replication, all ANOVAs were performed on
replication means.

Results

Atmospheric and edaphic factors

Planting dates were similar between years. Con-
sequently, trends in solar radiation, air temperature
and vapor pressure deficit were also similar. Most days
had predominantly clear skies. The maximum solar
and daily integral of global solar radiation ranged from
2.2 to 3.6 MJ m−2 h−1 and from 14 to 28 MJ m−2 d−1.
A corresponding increase in maximum air temperature
from 18 to 34 ◦C occurred in response to an increase in
solar radiation. An increase in the evaporative demand
imposed on the crop was evident from the increase
in midday vapor pressure deficit, which ranged from
1.0 kPa at tillering to just under 5 kPa at hard dough
(AZMET; Brown 1987).

Irrigation scheduling maintained soil volumetric
water content near field capacity (Kimball et al. 1999;
Hunsaker et al. 2000). Consequently, the effects of
elevated CO2 and N availability on gas exchange pro-
cesses in wheat could be investigated independent of
water effects.
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Table 1. Source of variance in ANOVA for carbon dioxide [CO2: Control compared with
FACE (370:550 µmol mol−1)], nitrogen [N: Low compared with High (7:35 g m−2 during
1995–6 and 1.5:35 g m−2 during 1996–7)], time of day (TODa), growth stage as repeated
measure (GS)b and replication (R) effects on net assimilation rate (A), stomatal conduct-
ance (gs) and ratio of internal–atmospheric CO2 concentration (Ci/Ca) of upper most fully
expanded sunlit spring wheat leaves during 1996 and 1997

Sourcec df A gs Ci/Ca
d

1996 1997 1996 1997 1996 1997

R 2 ns ns ns ∗ ns ∗
CO2 1 ∗∗∗ ∗∗∗ ∗∗∗ ∗∗ ∗ ∗
N 1 ∗ ∗∗ ns ∗ ns ns

CO2×N 1 ns ns ∗∗ ns ns ∗∗
TOD 2 ∗∗∗ ns ns ns ns ∗∗∗
TOD×CO2 2 ns ns ns ns ns ns

TOD×N 2 ns ns ns ns ns ns

TOD×CO2×N 2 ns ns ns ns ns ns

GS 4 ∗∗∗ ∗∗∗ ∗∗ ∗∗ ∗ ns

GS×CO2 4 ∗ ∗∗ ∗ ns ns ns

GS×N 4 ∗∗∗ ∗∗ ∗ ∗ ns ns

GS×CO2×N 4 ns ns ns ns ns ns

GS×TOD 8 ∗∗∗ ∗ ns ∗∗∗ ns ∗∗∗
GS×TOD×CO2 8 ns ∗∗ ns ns ns ns

GS×TOD×N 8 ns ns ns ∗ ns ns

GS×TOD×CO2×N 8 ns ns ns ns ns ns

∗∗∗, ∗∗, ∗ and ns for P ≤ 0.01, P ≤ 0.05, P ≤ 0.10, and not significant, respectively.
aMid-morning (2.5 h prior to solar noon), midday (solar noon), and mid-afternoon (2.5 h
after solar noon).
bZadoks growth stage corresponds to 5-leaf (DAP 062), tillering (DAP 083), stem-elongation
(DAP 103), anthesis (DAP 116), soft dough (DAP 130) and hard dough (DAP 144) during
1996; and, 5-leaf (DAP 051), tillering (DAP 079), inflorescence emergence (DAP 095),
anthesis (DAP 115), and hard dough (DAP 137) during 1997 (Zadoks 15-91; Zadoks et al.
1974).
cSource of variance in ANOVA (error term) include: R, CO2 (R×CO2); N (R×N); CO2×N
(R×CO2×N); TOD (R×TOD); TOD×CO2 (R×TOD×CO2); TOD×N (R×TOD×N);
TOD×CO2×N (R×TOD×CO2×N); GS (R×GS); GS×CO2 (R×GS×CO2); GS×N
(R×GS×N); GS×CO2×N (R×GS×CO2×N); GS×TOD (R×GS×TOD); GS×TOD×CO2
(R×GS×TOD×CO2); GS×TOD×N (R×GS×TOD×N); and GS×TOD×CO2×N
(R×GS×TOD×CO2×N).
dANOVA on Ci/Ca performed on Log(10).

Effects of CO2 and N on mid-morning, midday and
mid-afternoon gs , A, and Ci /Ca

All results from ANOVAs given below will follow a
similar order. Higher order interactions will be dis-
cussed first, then lower order interactions, then main
effects.

A four-way ANOVA (CO2, N, TOD, GS) indicated
that the main CO2 effect predominated for A, gs and
Ci/Ca (Table 1). The main N effect on A was more
significant than on either gs or Ci/Ca. During 1996,
a significant CO2 × N interaction did occur for gs

and for Ci/Ca during 1997. A significant TOD effect
was observed for A during 1996 and for Ci/Ca during
1997 (Table 1). Nevertheless, TOD did not inter-
act with either CO2 or N (nonsignificant TOD× CO2
and TOD × N, respectively). Furthermore, no mid-
afternoon depression in either A (Figure 1) or gs (Fig-
ure 2) was observed. Significant GS effects occurred
as N became more limiting throughout the ontogeny of
the crop, particularly for Low- compared with High-
N and during years of moderate (1996) compared
with severe (1997) N stress. Presumably, significant
GS×CO2 and GS×N effects occurred because of di-
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Figure 3. Seasonal midday (solar noon) net assimilation rate (A) (a, b), stomatal conductance (gs) (c, b), and ratio of internal (Ci) to atmospheric
(Ca) CO2 concentration (Ci/Ca) (e, f) for expanded sunlit wheat [T. aestivum (L.) cv. Yecora Rojo] leaves at growth stages given during 1996
(a,c,e) and 1997 (b,d,f). Standard errors, percentages in parentheses, symbols in legend, source of variance and results from ANOVA same as
described in Figure 1.
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lution of leaf N content during vegetative growth and
remobilization of N during reproductive growth.

Throughout a growing season, a consistent treat-
ment order for A was observed (FH>FL>CH>CL;
Figures 1, 3a,b). Treatment effects on gs were some-
what inverted, but generally ranked as CH>CL∼=
FH>FL (Figures 2 and 3c,d). Across N, seasons and
GS, A was 23, 22 and 31% greater in FACE than
Control at mid-morning, midday and mid-afternoon,
respectively. Under High-N, FACE increased A by 26,
25 and 36%, whereas under Low-N, FACE increased
A by only 21, 22 and 27% at mid-morning, midday
and mid-afternoon, respectively. Thus, the increase
in the CO2 effect for High- compared with Low-N
was 5% at mid-morning, 3% at midday and 9% at
mid-afternoon. Overall, High-N increased A by 15, 21
and 23% at mid-morning, midday and mid-afternoon
compared with Low-N, respectively.

Across N, seasons and GS, FACE reduced gs by 30,
39 and 28% compared with Control at mid-morning,
midday and mid-afternoon, respectively (Figure 2).
Under High-N, FACE reduced gs by 30% at mid-
morning, 36% at midday and 27% at mid-afternoon,
whereas under Low-N gs was reduced by as much
as 31% at mid-morning, 44% at midday and 28% at
mid-afternoon. Thus, there was an additional reduc-
tion in gs in FACE compared with Control for Low-
compared with High-N of 1% at mid-morning, 8% at
midday and 1% at mid-afternoon. These results are
consistent with reductions in gs by 16, 31 and 32% for
Low- compared with High-N at mid-morning, midday
and mid-afternoon, respectively. The lack of any clear
CO2 × N interaction effect for gs suggests that effects
of elevated CO2 and reduced N supply on gs were
additive rather then multiplicative.

During 1996, FACE tended to decrease midday
Ci/Ca under moderate N stress (Figure 3e). During
1997, however, when N stress was more severe, ef-
fects of elevated CO2 and N on Ci/Ca were mixed
(Figure 3f). Prior to anthesis Ci/Ca was ∼0.7, but after
anthesis it increased slightly as N became limiting.

Effect of CO2 and N on daily (A′) and seasonal (A′′)
integrals of A

Results from a three-way ANOVA (CO2, N, GS)
on daily integrals of A (A′) were consistent across
moderate (1996) and severe (1997) N stress years
(Table 2). Across N, YR and GS, A′ was 27%
greater in FACE (Figure 4) compared with Control.
Across CO2, YR and GS, High-N increased A′ by

Table 2. Source of variance in ANOVA for carbon dioxide [CO2:
Control compared with FACE (370:550 µmol mol−1)], nitrogen [N:
Low compared with High (7.0:35 g m−2 during 1995–6 and 1.5:35
g m−2 during 1996–7)], growth stagea (GS) and replication (R)
effects for daily integrals of net assimilation rate (A′) of uppermost
fully expanded sunlit spring wheat leaves during 1996 and 1997

Sourceb df A′
1996 1997

R 2 ns ns

CO2 1 ∗∗∗ ∗∗
N 1 ∗ ∗∗
CO2×N 1 ns ns

GS 4 ∗∗∗ ∗∗∗
GS×CO2 4 ∗∗ ∗∗∗
GS×N 4 ∗∗∗ ∗∗∗
GS×CO2×N 4 ns ns

∗∗∗ , ∗∗, ∗ and ns for P ≤ 0.01, P ≤ 0.05, P ≤ 0.10, and not
significant, respectively.
aZadoks growth stage corresponds to 5-leaf (DAP 062), tillering
(DAP 083), stem-elongation (DAP 103), anthesis (DAP 116), soft
dough (DAP 130) and hard dough (DAP 144) during 1996; and, 5-
leaf (DAP 051), tillering (DAP 079), inflorescence emergence (DAP
095), anthesis (DAP 115), and hard dough (DAP 137) during 1997
(Zadoks 15–91; Zadoks et al. 1974).
bSource of variance in ANOVA (error term) include: R, CO2
(R×CO2); N (R×N); CO2×N (R×CO2×N); GS (R×GS);
GS×CO2 (R×GS×CO2); GS×N (R×GS×N); and GS×CO2×N
(R×GS×CO2×N).

18% compared with Low-N. Under High-N, FACE
increased A′ by 30%, whereas under Low-N it was
increased by only 23% (7% reduction in the stimulat-
ory effect of elevated CO2 on A′ for Low- compared
with High-N). Furthermore, as N stress became more
severe with the ontogeny of the crop, an increase
in the likelihood of a significant CO2×N interaction
for A′ occurred: 5-leaf (P = 0.72 for 1996; P = 0.01
for 1997); tillering (P = 0.25 for 1996; P = 0.99
for 1997); stem-elongation/inflorescence emergence
(P = 0.33 for 1996; P = 0.03 for 1997); anthesis
(P = 0.25 for 1996; P = 0.68 for 1997); soft-dough
(P = 0.14 for 1996). Although a decrease in midday
A occurred with GS (Figures 1, 3a,b), presumably be-
cause of dilution of tissue N content, an increase in
day length caused A′ to remain relatively constant for
a given treatment throughout the ontogeny of the crop
(Figure 4). Nevertheless, significant GS, GS × CO2
and GS × N effects (Table 2) suggest that the com-
pensatory effect of an increase in day length did not
totally mitigate the decline in A throughout the grow-
ing season. Hence, as N became more limited, the
overall stimulatory effect of FACE on A′ diminished



89

Figure 4. Daily integrals of carbon accumulated (A′) for expanded sunlit wheat [T. aestivum (L.) cv. Yecora Rojo] leaves at growth stages given
during 1996 (a) and 1997 (b). Standard error, percentages in parentheses, symbols in legend, source of variance and results from ANOVA same
as described in Figure 1.

(A′ was stimulated by −12, 9, 13, 9 and 14% more by
FACE than Control for High- compared with Low-N at
5-leaf, tillering, stem-elongation/inflorescence emer-
gence, anthesis and soft-dough stages, respectively,
Figure 4).

A three-way ANOVA (CO2, N, YR) for A′′ indic-
ated that the main CO2 effect predominated (Figure 5;
P = 0.03). Although the CO2 × N effect was not signi-
ficant, FACE stimulated A′′ by 28% under High-N and
by 23% under Low-N (Figure 5). YR, (P = 0.02) and
YR × CO2 (P = 0.03) effects occurred because FACE
enhanced A′′ by 29% during 1996, but by only 21%
during 1997. This resulted in an 8% reduction in the
stimulatory effect of FACE on A′′ under severe (1997)
compared with moderate (1996) N stress.

Discussion

For wheat grown with ample N and soil moisture sup-
ply, an increase in atmospheric CO2 concentration is
known to reduce stomatal aperture, increase carbon
gain, but have only a nominal effect on Ci/Ca in both
controlled-environment (Sionit et al. 1980a, 1981a;
Morison 1993, 1998; Lawlor et al. 1995) and field
studies (Wall et al. 1994, 1995; Garcia et al. 1998).
For wheat grown with ample N supply, our field-based
results on gs (Figures 2 and 3c,d) and A (Figures
1 and 3a,b) were in agreement with those reported
previously (accept hypothesis 1 for High N).

Presumably, N-stress altered anatomical [reduced
cell number (Nelson and MacAdam 1989)], architec-
tural (see Figure 5; Brooks et al. 2000), and xer-
omorphic [increase in cell wall thickening and the
volumetric modulus of elasticity (Morgan 1986)] char-
acteristic of individual leaf blades (personnel observa-



90

Figure 5. Seasonal integral of carbon accumulated (A′′) derived from 50% emergence until physiological maturity for expanded sunlit wheat [T.
aestivum (L.) cv. Yecora Rojo] leaves during 1996 and 1997. Standard error, percentages in parentheses, symbols in legend, source of variance
and results from ANOVA same as described in Figure 1.

tion). But, despite the multiplicative effect of elevated
CO2 and water stress on gs and Ci/Ca in a prior FACE
wheat experiment (Wall et al. 1994, 1995), the effect
of elevated CO2 and N stress on gs (Figures 2 and
3c,d) and Ci/Ca (Figure 3e,f) appeared to be additive.
Environmental constraints, such as water stress, have
been shown to cause mid-afternoon depressions in gs
which reduce carbon gain (Sionit et al. 1980b; Kramer
1983; Tenhunen 1984). Mid-afternoon depression in
gs and subsequent carbon gain were observed in the
Dry treatment of the FACE wheat CO2 × Irrigation
experiment (Wall et al. 1994, 1995), which resulted
in significant CO2 by Irrigation by TOD interaction
effect for gs and Ci/Ca. In contrast, during this study
CO2 and N did not interact with TOD for either A, gs,
or Ci/Ca (nonsignificant TOD × CO2 and TOD × N
interaction effects, Table 1). These results suggest
that although N stress altered anatomical character-
istics towards more xeromorphic traits, these changes

caused only a minor additional reduction in gs than
that caused by elevated CO2 alone (accept hypothesis
1 for Low N) (Figures 2 and 3b,c).

In a companion study, Wechsung et al. (2000) re-
ported that the effects of elevated CO2 on gs of ears
of wheat was similar regardless of either water or N
stress. Perhaps, water or N stress-based adaptations
may not occur to the same degree in ears as they ap-
parently did in leaves, because gs of ears was less
responsive to either water or N stress. Nevertheless,
elevated CO2 caused a significant increase in carbon
gain in leaves within a day (Figure 1), across days
(Figure 4) and seasons (Figure 5). Because N stress
only caused an additional 5% reductions in gs (Fig-
ure 2), a proportionately greater reduction in carbon
gain for N-stressed wheat grown in elevated CO2 (Fig-
ures 1, 3a,b, 4 and 5) occurred because of a decrease in
carboxylation capacity (Adam et al. 2000), rather than
any direct effect of N stress on diffusion conductance
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of CO2 into the substomatal cavity (accept hypothesis
2).

Reduced plant N concentration has been com-
monly observed with ontogeny of grasses (Hocking
and Meyer 1991a,b; Newton 1991; Conroy 1992; Con-
roy and Hocking 1993; Coleman et al. 1993; Owensby
et al. 1993a). Apparently, an increase in atmospheric
CO2 concentration exacerbates this effect, because an
increase in assimilate supply (Figures 1, 3a,b, 4 and
5) and subsequent growth (Pinter et al. 1996) causes a
dilution of leaf tissue N concentration (Lue et al. 1994;
Drake et al. 1997). Morgan et al. (1994) demonstrated
that photosynthetic acclimation occurred for two nat-
ive shortgrass steepe grasses (P. smithii, B. gracilis),
but that reductions in photosynthetic capacity were re-
lated more to reductions in leaf N concentration than
to the accumulation of non-structural carbohydrates.
In companion studies, Estiarte et al. (1999) and Sin-
clair et al. (2000) reported significant reductions in
whole-canopy leaf tissue N concentration with the on-
togeny of wheat that were significantly greater in the
elevated CO2 and Low-N treatment. Reduced plant
N concentrations may indicate a reduced N require-
ment (Conroy 1992; Long et al. 1993). A reduction
in leaf tissue N concentration under elevated CO2 res-
ults from an active reallocation of N by plants from
photosynthetic proteins to maintain structural growth
(Hilbert et al. 1991; Morison and Lawlor 1999). Per-
haps, the greater dilution of leaf tissue N concentration
that occurred because of elevated CO2 and Low-N
supply can explain the increased likelihood of a signi-
ficant CO2 × N interaction effect for A (Figures 1 and
3a,b) and A′ (Figure 4) with crop ontogeny. This was
most obvious at stem-elongation during 1996 (Figures
1c and 4a) and inflorescence emergence during 1997
(Figures 1f and 4b), and can explain a portion of the
8% decrease in the season-long stimulatory effect of
elevated CO2 under Low- compared with High-N un-
der severe (1997) compared with moderate (1996) N
stress (Figure 5) (accept hypothesis 3).

Because Rubisco is not usually catabolized for
remobilization of N from leaves until grain filling
(Simpson 1992; Simpson et al. 1992; Fisher 1993),
any reduction in midday A (Figures 1 and 3a,b) that
resulted from an increase in CO2 under Low-N during
vegetative growth, without a corresponding reduction
in either midday gs (Figures 2 and 3c,d) or midday
Ci/Ca (Figure 3e,f), probably occurred because of en-
hanced N use efficiency for growth (Coleman et al.
1993; Rogers et al. 1993; Sage 1994, 1996; Drake
et al. 1997) balanced with N allocated for energy

transduction (Osborne et al. 1997) and carboxyla-
tion capacity (Woodrow 1994; Webber et al. 1995;
Osborne et al. 1998) (accept hypothesis 4).

Our results were based on the uppermost expanded
sunlit leaf blade where light was not limiting. Con-
sequently, we believe that no reallocation of N for
energy transduction typical of a shade acclimation re-
sponse occured in these leaves (Long and Drake 1991;
Evans 1993; Osborne et al. 1997). Any reductions
in A, A′ or A′′ were more closely associated with the
effects of elevated CO2 and N stress on diminished
carboxylation capacity (Adam et al. 2000), rather than
changes in the diffusion conductance of CO2. Hence,
we believe that the magnitude of the difference in the
stimulatory effect of elevated CO2 on A (Figures 1 and
3a,b) and subsequent values of A′ (Figure 4) and A′′
(Figure 5) observed under High- compared with Low-
N was large enough to support the premise that major
alterations in the quantity of Rubisco occurred even in
the uppermost expanded sunlit leaf. This decrease in
carboxylation capacity in leaves of wheat constitutes
an acclimatory response to rising levels of atmospheric
CO2 concentration under N-limited conditions (accept
hypothesis 5).

Adam et al. (2000) reported that acclimation of the
photosynthetic apparatus of wheat was dependent on
atmospheric CO2 concentration, N availability, and
leaf position and age. Results reported herein sug-
gest that elevated CO2 and limited N supply caused
an acclimation response for even the uppermost ex-
panded sunlit leaf, especially, in later growth stages.
Furthermore, based on biochemical results, reductions
in carboxylation capacity because of elevated CO2 and
limited N supply were consistent with reductions in
leaf net assimilation rates observed in this study (Fig-
ures 1, 3a,b, 4, and 5). A discrepancy exists, however,
because elevated CO2 stimulated net assimilation rate
by 30% for individual leaves (Figure 1), but by only
13% for the whole canopy (Brooks et al. 2000). Com-
parisons between individual leaf and whole-canopy
carbon uptake usually differ because they are based
on leaf- and ground-area, respectively. Nevertheless,
difference between individual leaf and whole-canopy
carbon uptake can also be explained by differences in
the effect of elevated CO2 and either water or N stress
on acclimation response within the canopy. For well-
watered wheat grown with ample N supply, Osborne
et al. (1998) reported a decrease in carboxylation ca-
pacity in leaves lower in the canopy. Elevated CO2
also increased quantum efficiency of net assimilation,
decreased the light compensation point, and decreased
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photosynthetic capacity in leaves of a shade adapted
forest under story plant, Indian strawberry (Osborne
et al. 1997). In a companion study, Adam et al. (2000)
reported that for the top three leaves of the wheat can-
opy N stress decreased carboxylation capacity with
canopy depth. Also, elevated CO2 can cause altera-
tions in light (radiation use efficiency), temperature
and vapor pressure gradients within the canopy that
can affect both the magnitude and the direction of the
photosynthetic response of individual leaves, thereby
affecting whole-canopy carbon uptake (Long 1991).

Brooks et al. (2000) demonstrated that compensa-
tory changes in stress driven morphological responses
within the whole canopy could also mitigate the de-
gree of the CO2 and N treatment response observed
at the biochemical and individual leaf levels. Nitro-
gen stress not only caused xeromorphic adaptations
in leaf tissue which improved water status (Morgan
1986), but it also caused a more erect canopy struc-
ture (Araus et al. 1986a, 1993; Brooks et al. 2000).
The more erect canopy architecture, commonly ob-
served under N stress, would tend to increase light
and temperature with canopy depth, which would alter
water vapor pressure regimes of leaves within the can-
opy (Green 1987; Garcia et al. 1988). In contrast, the
more planer canopy architecture, commonly observed
for non-stressed wheat canopies, would lower light,
and temperature with canopy depth, which could also
alter water vapor pressure regimes. Compared with a
more erect canopy, a more planer one is more likely to
contribute to the observed acclimation response under
elevated CO2. Hence, a positive feedback between the
compensatory effect of an increase in light and temper-
ature, and alteration in water vapor pressure regimes
for N-stressed canopies could have played a role in
significantly mitigating the stimulation of individual
leaf carbon gain by elevated CO2. Further support
of this feedback was obtained from results on both
above- and below-ground quantities of net primary
production (Pinter et al. 1996), which were in better
agreement with whole canopy rather than individual
leaf or biochemical-based carbon gain.

Conclusions

Our results demonstrate the inherent complexities in
accounting for any acclimatory response of wheat to
global change across biochemical (Adam et al. 2000),
individual leaf (results reported herein) and whole
canopy (Brooks et al. 2000) levels. Nevertheless, des-

pite any differences in the magnitude of the treatment
response between individual leaf and whole canopy,
the relative response in carbon gain was consistent
across different scales. Hence, an acclimatory (down-
regulation) response in the photosynthetic apparatus
of field-grown wheat is anticipated in a future high-
CO2 world, but only if nitrogen is limited. Our results
also demonstrate, however, that the stimulatory effect
of a rise in atmospheric CO2 on carbon gain in wheat
can be maintained if nutrients such as nitrogen are in
ample supply.
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